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Real-time Deep Tracking via Corrective Domain Adaptation
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Abstract—Visual tracking is one of the fundamental problems
in computer vision. Recently, some deep-learning-based tracking
algorithms have been illustrating record-breaking performances.
However, due to the high complexity of neural networks, most
deep trackers suffer from low tracking speed, and thus are
impractical in many real-world applications. Some recently-
proposed deep trackers with smaller network structure achieve
high efficiency while at the cost of significant decrease on preci-
sion. In this paper, we propose to transfer the deep feature which
is learned originally for image classification to the visual tracking
domain. The domain adaptation is achieved via some “grafted”
auxiliary networks which are trained by regressing the object lo-
cation in tracking frames. This adaptation improves the tracking
performance significantly, both on accuracy and efficiency. The
yielded deep tracker is real-time and also illustrates the state-of-
the-art accuracies in the experiment involving two well-adopted
benchmarks with more than 100 test videos. Furthermore, the
adaptation is also naturally used for introducing the objectness
concept into visual tracking. This removes a long-standing target
ambiguity in visual tracking tasks and we illustrate the empirical
superiority of the more well-defined task.

Index Terms—Visual tracking, deep learning, real-time

I. INTRODUCTION

Visual tracking is one of the fundamental computer vision
tasks. During the last decade, as the surge of deep learning,
more and more tracking algorithms benefit from deep neural
networks, e.g. Convolutional Neural Networks [1], [2] and
Recurrent Neural Networks [3], [4]. Despite the well-admitted
success, a dilemma still existing in the community is that,
deep learning increases the tracking accuracy, while at the
cost of high computational complexity. As a result, most well-
performing deep trackers usually suffer from low efficiency
[5], [6]. Recently, some real-time deep trackers were proposed
[7], [8], [9]. They achieved very fast tracking speed, but can
not beat the shallow methods in some important evaluations,
as we illustrate later.
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In this paper, a simple yet effective domain adaptation al-
gorithm is proposed. The equipped tracking algorithm, termed
Corrective Domain Adaptation (CODA), transfers the features
from the classification domain to the tracking domain, where
the individual objects, rather than the image categories, are
used as the learning samples. Figure 1 illustrates the main
concept of the proposed domain adaptation, in a high level.
The advantage of the proposed domain adaptation is three-
fold. First, the shallow visual tracker, e.g., the KCF algorithm
employed in this work, can extract more informative deep
features from the transferred feature space. Secondly, the
adaptation could be also viewed as a dimension-reduction
process that removes the redundant information for tracking,
and more importantly, reduces the channel number of the deep
feature significantly. This leads to a remarkable increase on
tracking speed. Last but not least, the adaptation introduces
small auxiliary CNN “branches” that could seamlessly correct
the predictions of the shallow visual trackers. Inspired by
the successful adoption of objectness in visual tracking [10],
[11], we exploit the category information of the tracking
target in CODA, in a relatively natural way. For a certain
object category, the CNN “branches” are fine-tuned to correct
the tracking boxes, and thus higher tracking accuracies are
obtained.

The experiments show that the proposed CODA algorithm
runs in around 35 FPS while achieves comparable tracking ac-
curacy to the state-of-the-art trackers. To our best knowledge,
our CODA is the best-performing real-time visual tracker.
Furthermore, given the category information of the tracking
target, the corrective CNN branches lead to a significant boost
in tracking accuracy while keep the tracking speed nearly
unchanged. In summary, the main contribution of this paper
includes:

• We propose a simple yet effective domain adaptation
method for visual tracking. The adaptation not only leads
to a real-time tracking speed, but also remains a high
tracking accuracy which is comparable to the state-of-
the-art trackers.

• For a certain type of tracking target, we propose to use
the CNN branches, which are originally trained to adapt
the deep feature to the visual tracking domain, to correct
the initial tracking boxes. Within a sophisticated inference
framework, the tracking accuracy boosts dramatically.

• From another perspective, the success of the corrective
adaptation empirically proofs that a more well-defined
tracking target, rather than a simple bounding-box, could
benefit the tracking process significantly. In other words,
this work offers an alternative to addressing the long-
standing “ill-posed” problem in visual tracking.
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Fig. 1. The high level concept of the proposed CODA tracker. Left: most of the deep neural network is pretrained for image classification, where the learning
algorithm focus on object classes. Right: an adaptation is performed to transfer the classification features to the visual tracking domain, where the learning
algorithm treats the individual object independently.

II. RELATED WORK

A. Deep trackers

Similar to other fields of computer vision, in recent years,
more and more state-of-the-art visual trackers are deep-
learning based. [1] is a well-known pioneering work that learns
deep features for visual tracking. The DeepTrack method [10],
[2] learns a deep model from scratch at the first frame and then
updates it online. [12], [13] adopt the similar learning strategy,
i.e., learning the deep model offline with a large number of
images while updating it online for the current video sequence.
[14] achieves real-time speed via replacing the slow model
update with a fast inference process.

The HCF tracker [5] extracts hierarchical convolutional
features from the VGG-19 network [15], then put the features
into correlation filters to regress the respond map. It can be
considered as a combination between deep learning and the
fast shallow tracker based on correlation filters. It achieves
high tracking accuracy while the speed is around 10 fps.

Hyeonseob Nam et al. proposed to pre-train deep CNNs
in multi domains, with each domain corresponding to one
training video sequence [6]. The authors claim that there
exist some common properties that are desirable for target
representations in all domains such as illumination changes. To
extract these common features, the authors separate domain-
independent information from domain-specific layers. The
yielded tracker, termed MD-net, achieves excellent tracking
performance while the tracking speed is only 1 fps.

B. Real-time deep trackers

Recently, some real-time deep trackers have also been
proposed. [14] propose to infer the target location based on
the deep features extracted from a fixed CNN model. Without
updating the CNN model, it achieves real-time speed. In [7],

David Held et al. learn a deep regressor that can predict
the location of the current object based on its appearance
in the last frame. The tracker obtains a much faster tracking
speed (over 100 fps) comparing to conventional deep trackers.
Similarly, in [8] a fully-convolutional siamese network is
learned to match the object template in the current frame.
It also achieves real-time speed. Even though these real-time
deep trackers also illustrate high tracking accuracy, there is still
a clear performance gap between them and the state-of-the-
art deep trackers. [16] discusses how different regularization
terms of correlation filters essentially influence the tracking
performance. The yielded variations of KCF tracker achieve
higher tracking accuracy than the ordinary KCF, at the cost of
speed reduction (from the speed over 100 fps of the original
KCF to around 37 fps).

C. Deep tracking with objectness

Nearly all the deep trackers exploit the information of
generic or specific object categories to achieve higher tracking
accuracies. Most of the state-of-the-art deep trackers involve
the objectness implicitly via pre-training the network off-line
on the dataset with object categories and bounding-boxes. [1],
[14], [13], [6], [17]. [11] designs a heuristic object proposal
algorithm for eliminating the non-object tracking candidates
and thus the tracker can hardly lose the target due to a mis-
leading background patch. While most of the methods mainly
focus on the generic objectness, [10] pay more attention to
the specific object categories. By pre-training the CNN model
with the object samples from a certain category, e.g., human
faces, the DeepTrack algorithm performs more robust for the
specific object type.

[10] and [11] has illustrated the superiority of a more well-
defined tracking task based on the introduction of objectness.
In fact, the introduction partially addresses the “ill-posed”
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problem in visual tracking which causes a long-standing criti-
cism to tracking tasks. Following the high-level methodology
of the pioneering work, we propose to leverage the information
of tracking target category in our CODA algorithm, as we
illustrate in Section IV-B.

D. Deep detectors
Similar to the visual tracking area, object detection algo-

rithms have also been enjoying the “deep learning revolution”
for a couple of years. The early successful deep detectors
[18], [19] demonstrate high accuracy while the detection speed
is low. Some faster deep detectors are then designed and
proposed [20], [21], [22] and the most recently proposed
approaches [23], [24] achieve both high detection efficiency
and accuracy.

By noticing that most of the state-of-the-art visual trackers
employ the “tracking-by-detection” strategy where the visual
tracker is essentially a target detector. The deep detector and
deep tracker are very similar from the methodology perspec-
tive. Moreover, even though there are various deep trackers
and detectors, they use very limited types of neural networks,
such as VGG-16/19 [15] or the residual network [25]. Those
connections imply a better visual tracking algorithm can be
obtained if the tracker is fused with a deep detector properly.
In this paper, we enhance the deep tracking algorithm using
the learning and inference strategies of a sophisticated deep
detector, as we show in Section III.

III. DOMAIN ADAPTATION FOR ROBUST AND REAL-TIME
VISUAL TRACKING

In this section, we introduce the details of the proposed
tracking algorithm, i.e., the Corrective Domain Adaptation
(CODA) tracker.

A. Network structure
The proposed work is developed based on the HCF [5]

tracking algorithm which is one of the state-of-the-art visual
trackers. In HCF, deep features are firstly extracted from
multiple layers of the VGG-19 network [15], and a set of KCF
[26] trackers are carried out on those features, respectively.
The final tracking prediction is obtained in a weighted voting
manner. Following the setting in [5], we also extract the deep
features from conv3 5, conv4 5 and conv5 5 network layers
of the VGG-19 model. However, the VGG-19 network is pre-
trained using the ILSVRC dataset [27] for image classification,
where the learning algorithm usually focus on the object
categories. This is different from visual tracking tasks, where
the individual objects are distinguished from other ones (even
those from the same category) and the background. Intuitively,
it is better to transfer the classification features into the visual
tracking domain.

In this work, we propose to perform the domain adaptation
in a simple way. A “tracking branch” is “grafted” onto
each feature layer, as shown in Fig. 8. The tracking branch
is actually a convolution layer which reduces the channel
number by 8 times and keeps feature map size unchanged.
The convolution layer is then learned via minimizing the loss
function tailored for tracking, as introduced below.

B. Learn the domain adaptation

The parameters in the aforementioned tracking branch is
learned following a similar manner as Single Shot MultiBox
Detector (SSD), a state-of-the-art detection algorithm [22].
When training, the original layers of VGG-19 (i.e. those ones
before conv 5 are fixed and each “tracking branch” is trained
independently) The flowchart of the learning procedure for one
tracking branch (based on conv3 4) is illustrated in upper row
of Figure 3, comparing with the learning strategy of MD-net
[6] (the bottom row). To obtain a completed training circle,
the adapted feature in conv3 5 is used to regress the objects’
locations and their objectness scores (shown in the dashed
block). Please note that the deep learning stage in this work
is purely offline and the additional part in the dashed block
will be abandoned for generic object tracking. For specific
categories, we propose to utilize the “tracking branches” for
correcting the initial tracking boxes.

In SSD, a number of “default boxes” are generated for
regressing the object rectangles. Furthermore, to accommodate
the objects in different scales and shapes, the default boxes
also vary in size and aspect ratios. Let mi,j ∈ {1, 0} be an
indicator for matching the i-th default box to the j-th ground
truth box. The loss function of SSD writes:

L(m, c, l, g) =
1

N
(Lconf (m, c) + αLloc(m, l, g)) (1)

where c is the category of the default box, l is the predicted
bounding-box while g is the ground-truth of the object box, if
applicable. For the j-th default box and the i-th ground-truth,
the location loss Li,jloc is calculated as

Li,jloc(l, g) =
∑

u∈{x,y,w,h}

mi,j · smoothL1
(lui − ĝuj ) (2)

where ĝu, u ∈ {x, y, w, h} is one of the geometry parameter
of normalized ground-truth box.

However, the task of visual tracking differs from detection
significantly. We thus tailor the loss function for the KCF
algorithm, where both the object size and the KCF window
size are fixed. Recall that, the KCF window plays a similar role
as default boxes in SSD [26], we then only need to generate
one type of default boxes and the location loss Li,jloc(l, g) is
simplified as

Li,jloc(l, g) =
∑

u∈{x,y}

mi,j · smoothL1(lui − guj ) (3)

In other words, only the displacement {x, y} is taken into
consideration and there is no need for ground-truth box
normalization.

Note that the concept of domain adaptation in this work
is different from that defined in MD-net [6], where different
video sequences are treated as different domains and thus
multiple fully-connected layers are learned to handle them
(see Figure 3). This is mainly because in MD-net samples
the training instances in a sliding-window manner. An object
labeled negative in one domain could be selected as a positive
sample in another domain. Given the training video number
is C and the dimension of the last convolution layer is dc,
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Fig. 2. The network structure of the proposed CODA tracker. Three layers, namely, conv3 5, conv4 5 and conv5 5 are selected as feature source. The
domain adaption (as shown in yellow lines) reduces the channel number by 8 times and keeps feature map size unchanged. Better viewed in color.
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Fig. 3. The flow-charts of the training process of CODA and MD-net. Note that the network parts inside the dashed blocks are only used for training and
will be abandoned before tracking. Better viewed in color.

the MD-net learns C independent dc × 2 fully-connected
alternatively using C soft-max losses, i.e.,

Mi
fc : Rdc → R2,∀i = 1, 2, . . . , C (4)

whereMi
fc,∀i ∈ {1, 2, . . . , C} denotes the C fully-connected

layers that transferring the common visual domain to the
individual object domain, as shown in Figure 3.

Differing from the MD-net, the domain in this work refers
to a general visual tracking domain, or more specifically,
the KCF domain. It is designed to mimic the KCF input
in visual tracking (see Figure 3). In this domain, different
tracking targets are treated as one category, i.e., objects. When

training, the object’s location and confidence (with respect to
the objectness) are regressed to minimize the smoothed l1 loss.
Mathematically, we learn a single mapping functionMconv(·)
as

Mconv : Rdc → R4 (5)

where the R4 space is composed of one R2 space for displace-
ment {x, y} and one label space R2.

Compared with Equation 4, the training complexity in
Equation 5 decreases and the corresponding convergence be-
comes more stable. Our experiment proves the validity of the
proposed domain adaptation approach.
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C. Multi-scale domain adaptation

As introduced above, the domain adaption in our CODA
method is essentially a convolution layer. To design the layer,
an immediate question is how to select a proper size for the
filters. According to Figure 8, the feature maps from different
layers vary in size significantly. It is hard to find a optimal
filer size for all the feature layers. Inspired by the success of
Inception network [28], we propose to simultaneously learn
the adaptation filters in different scales. The response maps
with different filter sizes are then concatenated accordingly, as
shown in Figure 4. In this way, the input of the KCF tracker
involves the deep features from different scales.

Conv3_4
256@56x56

7x7

5x5

3x3

Conv3_5
36@56x56

Fig. 4. Learn the adaptation layer using three different types of filters

In practice, we use 3 × 3 and 5 × 5 filters for all the
three feature layers. Given the original channel number is K,
each type of filter generate K

16 channels and thus the channel
reduction ratio is still 8 : 1.

D. Make the tracker real-time

1) Channel reduction
One important advantage of the proposed domain adaptation

is the improvement of the tracking speed. It is easy to see that
the speed of KCF tracker drops dramatically as the channel
number increase. In this work, after the adaptation, the channel
number is shrunk by 8 times which accelerates the tracker by
2 to 2.5 times.

2) Lazy feed-forward
Another effective way to increase the tracking speed is to

reduce the number of feed-forwards of the VGG-19 network.
In HCF, the feed-forward process is conduct for two times
at each frame, one for prediction and one for model update
[5]. However, we notice that the displacement of the moving
object is usually small between two frames. Consequently,
if we make the input window slightly larger than the KCF
window, one can reuse the feature maps in the updating stage if
the new KCF window (defined by the predicted location of the
object) still resides inside the input window. We thus propose
a lazy feed-forward strategy, which is depicted in Figure 5.

In this work, we generate the KCF window using the same
rules as HCF tracker [5], the input window is 10% larger than
the KCF window, both in terms of width and height. Facilitated

Current position

Last position

margin

Fig. 5. The illustration of lazy feed-forward strategy. To predict the location
of the object (the boy’s head), a part of the image (green window) is cropped
for generating the network input. Note that the green window is slightly larger
than the red block, i.e., the KCF window for predicting the current location.
If the predicted location (shown in yellow) still resides inside the green lines,
one can reuse the deep features by cropping the corresponding feature maps
accordingly.

by the lazy feed-forward strategy, in the proposed algorithm,
feed-forward is conducted only once in more than 60% video
frames. This gives us another 50% speed gain.

IV. CORRECTIVE DOMAIN ADAPTATION FOR SPECIFIC
OBJECT CATEGORIES

A. A long-standing ambiguity in visual tracking

Despite the widespread real-world usages, visual tracking
is still criticized as less well-posed compared with other tasks
with clearly-defined targets, such as object detection and se-
mantic segmentation. In visual tracking, the only reliable target
information is given at the first frame while the information
could be ambiguous or misleading in many circumstances.
For example, in Figure 6, a car is to be tracked in the
sequence. From the viewing angle at the first frame, only the
car back can be observed so it is defined as the “target” by the
blue bounding box. Nonetheless, this simple target definition
usually leads to an ambiguity: when the target pose changes
significantly, it is hard to evaluate tracking results. In specific,
as shown in Figure 6, either the yellow box or the blue box
can be considered as a “perfect” tracking, depending on what
exactly the tracking target is, the car back or the whole car.

?

Fig. 6. The commonly existing ambiguity in visual tracking. From left to
right, the car back is labeled as the tracking target at the first frame, as the
viewing angle changes, the car back and the visible part of the car become
more and more different. Finally, when the pose changes significantly, as
shown in the right column, it is hard to judge which bounding box (among
blue and yellow ones) is the better tracking result.

Unfortunately, a clearly-defined tracking target is usually
absent in visual tracking due to the very limited information,
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namely, a bounding box, given at the first frame. In this work,
we try to address the ill-posed problem via imposing the object
category in visual tracking tasks. In other words, the tracker
tracks the object given the target’s bounding box at the first
frame as well as the category of the target. This assumption
is similar to the original DeepTrack algorithm [10] while we
exploit the object information in a easier yet more effective
way.

B. Corrective Domain Adaptation

Given the specific target category, we naturally use the
proposed learning strategy proposed in Section III-B to learn
a set of CNN “branches” on the samples from this category
and then use the “branches” for correcting the prediction of
the deep tracker. The high-level concept of the “tracking-
detection-fusion” is illustrated in Figure 2

From Figure 2 one can see that the CNN model is essentially
the same to that in Figure 8 expect that the auxiliary CNN
branches are used for regressing the object bounding box. Note
that all the regression branches are not computationally com-
plex compared with the whole network, the extra computation
burden is not heavy.
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Fig. 7. The flowchart of the detection-guided tracking process. Top: the
tracking box (shown in red) is obtained following the same strategy as
HCF. Meanwhile, some detection bounding boxes are also generated by SSD.
Bottom: after removing the unqualified detection bounding boxes, the average
scale and aspect ratio of the detections are used to correct the current tracking
box. Better view in color.

C. A simple yet effective guidance from detector

Given the tracking bounding-box and detection bounding-
boxes, CODA merges the results in a simple yet effective
way. Figure 7 demonstrates the merging process. Specifically,
let us assume the tracking bounding-box (red bounding-box
obtained in the same way as the ordinary HCF tracker) is
represented as a 4-D vector Bt = [xt, yt, wt, ht] ∈ R4×1

where xt, yt, wt and ht are the x-axis coordinate of the
box center, the y-axis coordinate of the box center, the width
and the height of the tracking box, respectively. The SSD
detector generates multiple detection bonding-boxes stored
in the set Bd = {B1

d,B
2
d, . . .B

N
d } with the SSD scores

{s1d, s2d, . . . , sNd }. As shown in Figure 7, we firstly remove
some unqualified detection boxes that are far away from
the tracking box or with low scores. Normally, the qualified
detection box set is selected as

B′d = {∀Bi
d | IoU(Bi

d,Bt) > 0.5 & sid > 0.6} (6)

where the function IoU(B1,B2) stands for the “Intersection
over Union” of two bounding boxes B1 and B2, which is used
for evaluate their overlapping state.

We use at =
√
wt · ht and rt = wt/ht to represent the scale

and aspect ratio of the tracking box. Suppose the number of
qualified detection boxes is Nq , we calculate the average scale
and aspect ratio for the qualified detection boxes as

ād = 1
Nq

∑
Bi

d∈B
′
d

aid (7)

r̄d = 1
Nq

∑
Bi

d∈B
′
d

rid (8)

Then the scale and aspect ratio of the final prediction, i.e.,
a∗t and r∗t are given by

a∗t =
(

1− 1
1+exp(−λ(s∗d−s0))

)
· at + (9)

1
1+exp(−λ(s∗d−s0))

· ād

r∗t =
(

1− 1
1+exp(−λ(s∗d−s0))

)
· rt + (10)

1
1+exp(−λ(s∗d−s0))

· r̄d

where s∗d = max([s1d, s
2
d, . . . , s

Nq

d ]), i.e., the max scores over
the qualified detection boxes. The hyper-parameters λ and s0
are set to 10 and 0.6 in practice.

Finally, the predicted bounding-box of CODA writes

B∗t =

[
xt, yt,

wt · a∗t
at

,
wt · a∗t
at · r∗t

]
. (11)

From Equation 11 and Figure 7 one can see the original
HCF tracking box is corrected by the detection boxes. We
found the correction is usually beneficial thanks to the more
clear definition of the target category and the well-learned
detector. To make the corrective adaptation more clear for
readers, we summarize the whole process in Algorithm 1.

V. EXPERIMENT

A. Experiment overview

In this section, we evaluate the proposed CODA tracker in
two scenarios. First, the CODA for generic objects in which
the corrective CNN branches are abandoned. And second,
the CODA for specific target categories. The experiment is
conducted on several well-adopted datasets and compared with
some state-of-the-art trackers, especially the recently proposed
real-time deep trackers.
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for SSD regressing the object bounding-box. The predictions of the KCFs and the detection regressors are then merged for more robust tracking results.

The proposed CODA tracker is based on a VGG-19 network
[15] which is initialized using the ILSVRC classification
dataset, and then trained 3 domain adaptation layers which
transfer the deep features from classification domain to track-
ing domain. All the experiment is implemented in MATLAB
with matcaffe [29] deep learning interface, on a computer
equipped with a Intel i7 4770K CPU, a NVIDIA GTX1070
graphic card and 32G RAM.

B. Experiment on generic objects

In this subsection, we report the tracking performances on
generic objects of the proposed tracker and some state-of-the-
art approaches. As this work focus on real-time or semi-real-
time trackers, we compare our algorithm with HCF [5], GO-
TURN [7] which are two recently proposed fast trackers. Some
well-performing shallow visual trackers, such as the KCF
tracker [26], TGPR [30], Struck [31], MIL [32], TLD [33]
and SCM [34] are also involved as baselines. Furthermore, two
state-of-the-art deep trackers, i.e., MD-net [6] and the Siamese
tracker [8] are also compared. As explained above, for generic
objects, the corrective CNN branches are abandoned and only
the KCF tracking results are used.

1) Results on OTB-50
Similar to its prototype [35], the Object Tracking Bench-

mark 50 (OTB-50) [36] consists 50 video sequences and
involves 51 tracking tasks. It is one of the most popular
tracking benchmarks since the year 2013, The evaluation is
based on two metrics: center location error and bounding box
overlap ratio. The one-pass evaluation (OPE) is employed to

compare our algorithm with the HCF [5], GOTURN [7], the
Siamese tracker [8] and the afore mentioned shallow trackers.

The 3 domain adaptation layers of CODA are trained on 58
video sequences that collected from VOT2013 [37], VOT2014
[38] and VOT2015 [39], excluding the ones also include in
OTB50. The result curves are shown in Figure 9.

From Figure 9 we can see, the proposed CODA method
beats all the competitor in the overlapping evaluation while
ranks second in the location error test, with a trivial inferiority
(88.01 v.s. 89.07) to its prototype, the HCF tracker. Recall
that the CODA beats the HCF with a similar superiority
(61.41 v.s. 60.47) and runs 3 times faster than HCF, one
can consider the CODA as a major variation of the HCF,
with much higher speed and maintains its accuracy. From the
perspective of real-time tracking, our method performs the best
in both two evaluations. To our best knowledge, the proposed
CODA method is the best-performing real-time tracker in this
well-accepted test.

2) Results on OTB-100
The Object Tracking Benchmark 100 is the extension of

OTB-50 and contains 100 video sequences. We test our method
under the same experiment protocol as OTB-50 and comparing
with all the aforementioned trackers. The training set of the
CODA learning keeps the same to the experiment on OTB-
50. The test results as well as the tracking speeds (in fps) are
reported in Table I

As can be seen in the table, the proposed CODA algorithm
keeps its superiority over all the other real-time trackers and
keeps the similar accuracy to HCF. The best-performing MD-
net (according to our best knowledge) enjoys a remarkable
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TABLE I
TRACKING ACCURACIES AND SPEEDS (IN FPS) OF THE COMPARED TRACKERS ON OTB-100

Sequence Ours HCF MD-Net SiamFC GOTURN KCF Struck MIL SCM TLD
DP rate(%) 83.0 83.7 90.9 75.2 56.39 69.2 63.5 43.9 57.2 59.2
OS(AUC) 0.567 0.562 0.678 0.561 0.424 0.475 0.459 0.331 0.445 0.424

Speed(FPS) 34.8 11.0 1 58 165 243 9.84 28.0 0.37 23.3

Algorithm 1 Corrective Domain Adaptation Tracker (CODA)
Algorithm

Input: Pre-trained CNN network N , video sequence S,
init bbox p

1: pi = p
2: ovp = ∅
3: for each i ∈ [1, f ] do
4: Ii = next(S); . Get current frame
5: if i < Iwarm or sum(ovp) > t then
6: feati, boxesi, scoresi = forward(Ii, N) .

Feed-forward
7: boxesi = filtering(boxesi, scoresi, θ) . Filter

boxes
8: else
9: feati = forward(Ii, N

′
) . Forward without

fully connected layer
10: end if
11: if i = 1 then
12: Mkcf = init(feati) . Init KCF model
13: else
14: pi = predict(Mkcf , feati) . Get predicted box
15: if boxesi then
16: ovpi = overlapping(boxesi, pi)
17: if ovpi > threshold then
18: pi = merging(pi, boxesi) . Predictions

Fusion
19: end if
20: end if
21: end if
22: if i > 1 and |pi − pi−1| > τ then . Lazy update

strategy
23: Mkcf = update(Mkcf , feati)
24: end if
25: end for each

performance gap over all the other trackers while runs in
around 1 fps. To further illustrate the comparison between
the CODA tracker and other real-time trackers, Figure 14
shows the tracking results of the comparing real-time trackers
on some key frames of 9 representative OTB-100 video
sequences. As a reference, the HCF results are also depicted.

3) The validity of the domain adaptation
To better verify the proposed domain adaptation, here we

run another variation of the HCF tracker. For each feature layer
(conv3 4, conv4 4 and conv5 4) of VGG-19, one randomly
selects one eighth of the channels from this layer. In this way,
the input channel numbers to KCF are identical to the proposed
CODA and thus the algorithm complexity of the “random
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Fig. 9. The location error plots and the overlapping accuracy plots of the
involving trackers, tested on the OTB-50 dataset.

HCF” and our method are nearly the same. The comparison
of CODA, HCF and random HCF on OTB-50 is shown in
Figure 10.

From the curves one can see a large gap between the
randomized HCF (72.54 in location error and 50.68 in over-
lapping ratio) and the other two methods. In other words,
the proposed domain adaptation not only reduce the channel
number, but also extract the useful features for the tracking
task.
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Fig. 10. The location error plots and the overlapping accuracy plots of the
involving trackers, tested on the OTB-50 dataset.

C. Experiment on specific object categories

In this subsection, we test the proposed CODA tracker for
specific object categories. Note that CODA can only track
the object that the detector recognizes as well. The ordinary
SSD is learned for predicting 20-class objects in the VOC
dataset [40]. In visual tracking datasets, on the other hand, the
most common categories include cars, pedestrians and human
faces [36], [27]. The definition of the car category among
the VOC dataset and the involved visual tracking datasets is
identical. As a result, the CODA strategy can be smoothly
applied on this category. In specific, we firstly pre-train the
SSD-VGG-19 network for car detection on VOC2017 and
VOC2012 datasets [41] and keep the detection regressors.
Then the domain adaptation of CODA is then learned based on
the car-subset of the original training set which is introduced in
Section V-B. However, the same method can not be employed
straightforwardly for pedestrians as the “person” category in
VOC is defined very differently from the concept “pedestrian”

in visual tracking1. We thus pre-train the SSD model on the
the INRIA person dataset [42], which is a dedicated pedestrian
detection dataset. Similar to the experiment on the car cate-
gory, we keep the detection regressors for pedestrians and use
the pedestrian-subset of the training set for domain adaptation.
Finally, there is no face category in the VOC dataset and
the definition of the “face” category is ambiguous among
tracking tasks2 and face detection tasks [43]. Obviously, a face
trackers can not be guided well by a face detector with a very
different definition of “face”. Therefore, we do not conduct
the experiment on the face category in this paper3. In spite of
the absent face category, we still claim the experiment on cars
(rigid objects) and pedestrians (non-rigid objects) is sufficient
for evaluating the importance of target category information
in visual tracking.

1) Results on OTB-100-Car
To evaluate the proposed method, we select all the video

sequences targeting on cars from OTB-100, the totally 12
video sequences contain almost all of the tracking challenges
such as scale variation, illumination variation, occlusion and
motion blur. The one-pass evaluation (OPE) is employed to
compare our algorithm with the HCF [5], GOTURN [7], the
Siamese tracker [8] and the afore mentioned shallow trackers.
The result curves are shown in Figure 11

According to Figure 11 we can see that the proposed CODA
method ranks the first on location accuracy while ranks the
second with the overlapping metric. It achieves significantly
better results than its prototype, i.e., the HCF tracker. The per-
formance of CODA is also very close to the best-performing
MD-net. Siamese tracker is also comparable to CODA and
MD-net while GOTURN performs worse than the other deep
trackers. On the other hand, the shallow methods perform
consistently worse than the CODA, MD-Net and the Siamese
tracker.

2) Results on ILSVRC2016-VID-Car
The ILSVRC(Large Scale Visual Recognition Challenge)

[27] is one of the largest visual recognition datasets. The object
detection from video is a new detection task in recent years,
and there are 30 basic-level categories for this task, which is a
subset of the 200 basic-level categories of the object detection
task. We selected 58 videos that contains car from this dataset
and compare the location accuracy and overlap score over the
selected deep trackers 4. As Siamese tracker and the GOTURN
algorithm learned their models in this dataset, we remove them
from comparison. The success plots and the precision plots are
shown in Figure 12

From the figure we can see that CODA still achieves com-
parable accuracies as the best-performing MD-Net algorithm.
The remarkable gap between the CODA’s plots and the HCF’s

1The former one includes any part of a person while the latter one usually
stands for the whole human body

2For example, in OTB-100, some videos only annotated the facial part as
“face” while others involve hair and ears

3A CODA-based face tracker can also be built based on a well-learned face
detector while this is out of the scope of this paper

4We do not involve shallow trackers in this experiment as they usually
perform worse than the deep ones and the results of the shallow trackers are
not directly available
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Fig. 11. The location error plots and the overlapping accuracy plots tested
on the “car subset” of OTB-100. The comparing methods including MD-net
[6], HCF [5], the Siamese Tracker [8], GOTURN [7], CODA (this paper) and
the shallow trackers.

plots proofs the validity of the introduction of the object
categories.

3) Results on OTB-100-Pedestrian
We perform the same experiment on the pedestrian category

to evaluate the proposed corrective framework with non-
rigid objects. Similar to the experimental setting shown in
Section V-C1, we select all the 37 pedestrian video sequences
from OTB-100 as the test set and show the tracking perfor-
mances of comparing trackers in Figure 13.

According to the results shown in the Figure, one can
observe a significant increase on accuracy (both for location
precision and overlapping precision) after the pedestrian detec-
tor is used for correcting the tracking results. This indicates
that for nonrigid objects, the proposed CODA strategy still
performs well. On the other hand, the MD-Net and performs
better than the CODA tracker with category information, at
the cost of slow running speed (less than 1FPS).
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Fig. 12. The location error plots and the overlapping accuracy plots tested on
the “car subset” of the ILSVRC2016-VID dataset. The comparing methods
including HCF [5], our CODA tracker, MD-Net [6] and the shallow ones. We
do not involve the Siamese Tracker [8] and GOTURN [7] as they are trained
on this dataset.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a simple yet effective algorithm
to transferring the features in the classification domain to the
visual tracking domain. The yielded visual tracker, termed
CODA, is real-time and achieves the comparable tracking
accuracies to the state-of-the-art deep trackers. To our best
knowledge, CODA is the best-performing real-time visual
tracker in the literature as far.

For a specific target category, CODA guides the visual track-
ing by the detection results. As the deep tracker and the deep
detector share most part of the deep network, no much extra
computation is required. Meanwhile, we can see a dramatic
performance improvement in CODA, over its prototype, the
HCF tracker. This improvement implies the absence of the
target category could lead to poor tracking performance while
to address this ambiguity in a sophisticated way could yield
much better deep trackers.

Admittedly, updating the neural network online can lift the
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Fig. 13. The location error plots and the overlapping accuracy plots tested
on the “pedestrian subset” of OTB-100. The comparing methods including
MD-Net [6], HCF [5], the Siamese Tracker [8], GOTURN [7], CODA (this
paper) and the shallow trackers.

tracking accuracy significantly [2], [6]. However, the existing
online updating scheme results in dramatical speed reduction.
One possible future direction could be to simultaneously
update the KCF model and a certain part of the neural network
(e.g. the last convolution layer). In this way, one could strike
the balance between accuracy and efficiency and thus better
tracker could be obtained.

Another possible direction is to involve more than one
object categories in the corrective CNN branches for a cer-
tain type of tracking scenario. For instance, one can take
pedestrian, car, bicycle and motorbike into consideration for
road scene tracking. This could lead to even higher tracking
robustness than the one-category CODA proposed in this
paper.
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Fig. 14. Tracking results comparison on some key frames of 9 representative OTB-100 video sequences. The comparing methods include the proposed CODA
tracker (green), GOTURN [7] (blue), Siamese tracker [8] (dashed yellow), HCF tracker [5] (dashed green) and the KCF algorithm [26] (dashed light blue).
The red bounding boxes are the ground-truth locations of the tracking targets. Better view in color.


